Amphetamine activates connexin43 gene expression in cultured neonatal rat cardiomyocytes through JNK and AP-1 pathway.

نویسندگان

  • Kou-Gi Shyu
  • Bao-Wei Wang
  • Yu-Hui Yang
  • Shiow-Chwen Tsai
  • Shankung Lin
  • Chun-Chung Lee
چکیده

OBJECTIVE Amphetamine has been known to induce cardiac dysrhythmia and sudden death. However, the molecular mechanism for the induction of dysrhythmia is not known. Connexin43 (Cx43) plays an important role for arrhythmogenesis. This study was undertaken to test the hypothesis that amphetamine could induce Cx43 expression in cardiac myocytes. METHODS Neonatal Wistar rat cardiac myocytes were cultured under the stimulation of amphetamine. Cx43 mRNA and protein expression were examined by Northern and Western blots, respectively. We used c-Jun N-terminal kinase (JNK) inhibitor, SP600125, and JNK1 dsRNAi to investigate the signal pathway of amphetamine-induced expression of Cx43. RESULTS The level of Cx43 protein significantly increased from 4 to 24 h after addition of amphetamine (10 microM). The Cx43 mRNA increased maximally to 4.2-fold at 6 h after addition of amphetamine and returned to the baseline level at 48 h. These increases of Cx43 protein at 24 h were completely attenuated (P<0.001) by SP600125 (20 microM) and JNK1 dsRNAi. Amphetamine increased and SP600125 decreased the immunohistochemical labeling of Cx43. Amphetamine increased and SP600125 decreased the phosphorylated JNK and c-Jun proteins. Gel-shifting assay showed that DNA-binding activity of AP-1 increased after addition of amphetamine and SP600125 and JNK1 dsRNAi abolished the binding activity induced by amphetamine. CONCLUSIONS These findings indicate that amphetamine activates Cx43 gene expression in cultured rat neonatal cardiac myocytes. Amphetamine mediates the Cx43 gene expression, at least in part, through the JNK pathway. These findings from our study suggest that Cx43 plays a role for the molecular mechanism of amphetamine-induced cardiac dysrhythmias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Endothelin-1–Induced Cardiac Hypertrophy Is Inhibited by Activation of Peroxisome Proliferator–Activated Receptor- Partly Via Blockade of c-Jun NH2-Terminal Kinase Pathway

Background—Peroxisome proliferator-activated receptor(PPAR) is a lipid-activated nuclear receptor that negatively regulates the vascular inflammatory gene response by interacting with transcription factors, nuclear factorB, and AP-1. However, the roles of PPARactivators in endothelin (ET)-1–induced cardiac hypertrophy are not yet known. Methods and Results—First, in cultured neonatal rat cardio...

متن کامل

Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway.

BACKGROUND Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a lipid-activated nuclear receptor that negatively regulates the vascular inflammatory gene response by interacting with transcription factors, nuclear factor-kappaB, and AP-1. However, the roles of PPAR-alpha activators in endothelin (ET)-1-induced cardiac hypertrophy are not yet known. METHODS AND RESULTS First, in ...

متن کامل

Protective effect of bioactive compounds from Lonicera japonica Thunb. against H2O2-induced cytotoxicity using neonatal rat cardiomyocytes

Objective(s):Pharmacological studies showed that the extracts of Jin Yin Hua and its active constituents have lipid lowering, antipyretic, hepatoprotective, cytoprotective, antimicrobial, antibiotic, antioxidative, antiviral, and anti-inflammatory effects. The purpose of the present study was to investigate the protective effects of caffeoylquinic acids (CQAs) from Jin Yin Hua against hydrogen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 63 1  شماره 

صفحات  -

تاریخ انتشار 2004